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Experimental and theoretical results indicate that miniaturized micron-sized nonlinear beam phenomenology
in photorefractives leads to a regime qualitatively distinct from solitonlike propagation on consequence of the
specific role of space-charge saturation. In the highly modulated conditions typical of beams, this contribution
amounts to an effective electron self-action.
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Light beams propagating in photorefractive material ex-
perience a nonlinearity that leads to startling and useful phe-
nomenology even for low intensity regimes �1�. Optical self-
action is associated to the alteration of beam propagation due
to local light-driven electro-optic changes in the material in-
dex of refraction. These are produced by the electric space-
charge field generated by the charges displaced from photo-
ionized impurity sites. The effect is sensitive to the beam
transverse shape and to the presence of external applied elec-
tric fields, these determining the charge transport processes.
In the absence of bias, charge movement is triggered by dif-
fusion that can mediate two-wave-mixing for plane waves,
fanning for beams that have a relatively large waist �1�, or
anisotropic self-focusing for confined beams in paraelectric
crystals �2�. When bias is applied, diffusion combines with
charge drift and solitons can be observed, self-action result-
ing in a distributed self-lensing effect that exactly balances
diffraction, both in a transient �or quasi-steady-state� �3� and
in a steady-state regime �4� �for a review see Ref. �5��. This
occurs in a slowly varying condition in which the transverse
beam features are large enough to make diffusion and other
mechanisms, such as charge saturation, amount to small per-
turbations. In this regime, in a reduced 1�1D �one-
transverse-and-one-propagation-dimension� condition, soli-
ton size turns out to have no physical role, simply scaling the
required nonlinear response: tighter solitons require a stron-
ger external biasing electric field E0. In the transient, this
finding is supported by numerical simulation of experiments
�6�, whereas in the steady state, this is underlined by the
emergence of an effective Kerr-saturated nonlinearity �7�.
Furthermore, whereas for more confined beams �down to
10 �m� charge diffusion and partial charge saturation do in-
crease, these simply slant or self-bend the soliton trajectory
in a manner that now explicitly depends on its size �8�.

Since experiments typically involve beams with widths of
the order of 10 �m or wider, this picture holds for the greater
part of reported observations for 1�1D solitons �3,4�, and
even in part for the more complex 2�1D solitons �9,10�. In
turn, recent developments have involved considerably

smaller beam and/or soliton sizes, of the order of a few mi-
crons, especially in connection with optimal single-mode
fiber-soliton coupling �11�. In comparison to previous litera-
ture, results indicated a series of qualitatively new phenom-
ena, which included what appeared to be a temporal succes-
sion of different “soliton stages.” The fact that standard
soliton models did not predict this behavior suggested that
the small size of input launch beam could activate photore-
fractive mechanisms excluded by conventional approxima-
tion schemes. The aim of this present study is to extend
investigation to this highly confined case for 1�1D beams.
We will find that the micron-sized transverse features now
involve charge saturation in a nontrivial way, implying a
generalization of the standard material response model to
include all the principal mechanisms of the photorefractive
band-transport model. Apart from providing an understand-
ing of observed phenomenology, this study can become cen-
tral in identifying the ultimate limits to the transverse minia-
turization of screening solitons, influencing passive,
nonlinear, and electro-optical soliton-based device design
�12�. It can be furthermore instrumental in the elaboration of
a scheme for the future investigation of even tighter beam
evolution, where nonlinear electromagnetic nonparaxial soli-
ton mechanisms, presently identified in Kerr media, could be
observed through photorefractive self-action �13�.

In order to identify and compare the basic physical
mechanisms participating in the material response and con-
sequently implement an efficient simulation strategy, it is
convenient to make use of an appropriate approximate rela-
tionship between the optical intensity I and the space-charge
field E. In the generally adopted approximation, valid for
propagation of beams with scales of the order of 10 �m or
more, the relationship between I and E is obtained from the
equation �5,14�
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and the time scale �=�� /q�s�Id, � is the electron recombi-
nation rate, q the electron charge, � the dielectric constant, �
the charge mobility, s the photoexcitation cross section, �
= �Nd−Na� /Na ��1� the ratio of donor and acceptor concen-
tration, Id=	 /s the so-called dark illumination, 	 the thermal
excitation rate, and Q=1+ I / Id. We have singled out Eq. �2�,
which provides the relationship of the normalized conduction
band electron density to I and E �N��Ne / ��	�, where Ne is
the electron concentration� from Eq. �1� because, as we shall
discuss below, the critical approximations relevant to tight
beams involve specifically the expression in Eq. �2�. Equa-
tions �1� and �2� are generally further simplified in the slowly
varying approximation, for which both ��
 /qNa�� ·E � �1
and ��kbT /E0q�� ln�I+ Id� � �1, and the zero-order steady-
state response � · �E�1+ I / Id��=0 in a 1�1D geometry leads

to a local Kerr-saturated nonlinearity �n
1/ �1+ I / Id�m �m
=1,2 for ferroelectric and paraelectrics, respectively� �4,15�.
Equation �2� �and consequently Eq. �1�� becomes singular
and unphysical when � ·E	−qNa /
. For a beam this occurs
when its transverse spatial scale is comparable with �lim de-
termined by the condition that the optically induced electric
field reaches, at some instant and in a given region, what is
generally termed the saturation field, E
�Naq /
��lim�Esat
�1�. This typically implies, for a given steady-state soliton, an
�lim of the order of a few microns. For example, in a ferro-
electric strontium-barium-niobate with 
=103
0, Na=2
�1022 m−3, index of refraction of n=2.5, and a linear
electro-optic coefficient r=200 pm/V, �lim
3 �m for a �
=0.5 �m screening soliton of intensity ratio u0

2= Ip / Id= �4�2,
where Ip is the peak beam intensity Ip �7�. Similarly, for a
sample of paraelectric potassium-lithium-tantalate-niobate
�KLTN� with 
=104
0 and a quadratic electro-optic coeffi-
cient g=0.12 m2 C−4, the limiting beam width in the same
conditions for steady-state screening solitons is �lim
6 �m
�actually, in this case the condition turns out to be indepen-
dent of 
� �15�.

To observe optical propagation when Eq. �1� �with condi-

FIG. 1. Observation of beam
dynamics in the micron-sized re-
gime where evidence of a more
complex dynamical behavior is
observed. Transverse intensity dis-
tribution �top� and profile �bot-
tom� in normalized �to input peak
intensity Ip� units of the �a� input
4.5 �m 1�1D Gaussian beam; �b�
output after the 6 mm propagation
along the z axis at t=0; �c�–�l� af-
ter �t=10 min intervals.
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tion of Eq. �2�� becomes singular, we carried out soliton
experiments in the simplified condition of 1�1D self-
trapping for input beam intensity full-width-at-half-
maximum �FWHM� �x
 � ��lim. We studied beam evolu-
tion in conditions where the background illumination, which
is used to artificially increase Id, is much lower that the beam
peak intensity Ip. In standard experiments, this would lead to
the observation of transient self-focusing and self-trapping
�3,16�. We carried out experiments in a 3�x��2.6�y�

�6�z� mm sample of copper and vanadium doped KLTN
�17�, heated in the paraelectric phase, with a dielectric con-
stant �=1.1�104
0 �at T=15 °C�, an index of refraction n
=2.35, and Na	1.4�1022 m−3 �10�. Since the exact value of
the parameter Na, critical in determining �lim, is sample de-
pendent, we proceeded to scan launch beams with progres-
sively tighter input �x, and, as expected, the departure from
soliton phenomenology became increasingly more apparent.
Exemplifying, results of output beam intensity distributions
for a tight launch condition of �x	4.5 �m are shown in
Fig. 1, where u0

2	�10�2, and E0	1.7 kV/cm. These values,
combined with the estimated crystal parameters, guarantee
that �
�x��lim	7 �m �i.e., E�Esat�, and considerable
charge saturation can take place, invalidating Eq. �1� with
condition of Eq. �2�.

In the first stage of evolution the beam appeared to un-
dergo progressive self-focusing accompanied by self-
bending, a phenomenology which is qualitatively analogous
to transient self-trapping �as described by Eqs. �1� and �2� for
wide beams�. However, as confinement set in, the beam ac-
quired a characteristic asymmetric feature that ultimately
evolved into a lateral component sapping the principal beam
wave and hampering the formation of a single bell-shaped
self-focused and self-trapped propagation. This beam distor-
tion emerged well below the field required to achieve self-

trapping, which, according to the local transient soliton
theory, amounts to E0�=3.07� / �2�n2
�g�x�	2.9 kV/cm
for the �x=4.5 �m beam �i.e., E0�E0�� �16�, and even more
so for the extremely elevated field E0�	14 kV/cm required
for steady-state self-trapping �15�. As mentioned, these non-
solitonic dynamics became less apparent in the same condi-
tions for larger beams, but no sharp cutoff or transition was
detected, whereas larger values of applied external field E0
would lead to analogous but more evident nonsolitonic phe-
nomenology.

We next proceeded to modify the approximate description
by including those physical mechanisms, absent in Eqs. �1�
and �2� but present in the full nonlinear band-transport
model, which prevent its break-down for �
�lim, extending
description to the present experiments �1�. Direct inspection
of Eq. �2� indicates that the origin of the singularity is in
having neglected a kind of “electron self-action.” More pre-
cisely, due to the large concentration of acceptors, one is
brought to simplify the approach to the description of soliton
response by neglecting the free-electron concentration Ne in
the Gauss law Nd

+=Ne+Na�1+ �
 /qNa�� ·E� �Nd
+ being the

ionized donor concentration� and combining it with the
photoionization equation to explicitly obtain Ne. This
amounts to neglecting the effect of electron density on elec-
tron photoionization �self-action�. Where � ·E	−qNa /
 the
acceptor impurity charge density is the principal contribution
to the space charge density, since the ionized donor density
Nd

+ locally equals the free electron density Ne �and the two
charge densities cancel out�, a condition of charge saturation
where electron density can evidently not be neglected. Tak-
ing into account this electron self-action yields an equation
which is structurally the same as Eq. �1�, but with N replaced
by

N =
1

2��− Q − �
1 + � · � �E

qN
a

��� +��Q + �
1 + � · � �E

qN
a

���
2

+ 4�Q
� − � · � �E

qN
a

�� , �3�

where �=�Na / �sId�, and is physically associated with the
ratio between the dark electron density and the acceptor den-
sity �18�. Note that Eq. �3� prevents Eq. �1� from becoming
singular and coincides, as expected, with Eq. �2� in the limit
of very large concentration of acceptors ���1, and no satu-
ration being possible�.

On this basis, i.e., on the modified approach of Eq. �1� and
Eq. �3�, we implemented an appropriate numerical scheme to
predict the time evolution of the optical beam in the crystal.
At each time step, the extended model was used with the
optical intensity of the previous step to obtain the space-
charge field along with the index of refraction pattern. The
modified beam thus results from the parabolic wave equa-
tion, in which time plays the role of a parameter �6�. In Fig.

2 we show the numerical results for the conditions of the
experiments in Fig. 1. This prediction depends on three in-
dependent material specific parameters, which are consis-
tently determined to best reproduce the observed beam phe-
nomenology. These are �i� the time scale �	600 min; �ii� the
fundamental spatial scale �the Debye length �1�� �D
= ��KbT /q2Na�1/2	1.28 �m; and finally, �iii� the parameter
�	1.0�104. This allows the estimate of the specific sample
Na	0.93�1022 m−3, close to the preliminary value we used
to estimate �lim.

The absence of a distinct cutoff separating standard soli-
ton phenomenology from dynamics such as those in Fig. 1
suggested a more detailed study of charge saturation in space
and time. The picture based on a critical �lim is a clear cut
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condition for the steady-state regime, but we can expect that
things get more involved during beam transients. We ana-
lyzed charge saturation of the previous case for a given in-
stant, and a relevant snapshot is illustrated in Fig. 3. Here the
level plot of the normalized electric field divergence �i.e., the
normalized space-charge density � / �qNa�� shows the regions
where partial, substantial, and even total charge saturation
takes place. This indicates that the complex transient dynam-
ics, which include elaborate bending and breathing, can lo-
cally induce transient scales �
�lim.

Concluding, we have observed and explained the depar-
ture from soliton propagation of beams in the standard biased
crystal configuration when a tight micron-sized launch is
used. Contrary to what occurs for wider beams, here no con-
ditions allow for the formation of screening and transient
photorefractive solitons. In view of the increasing effort to-
wards an ever more miniaturized optoelectronic technology,

which ultimately aims at reaching the nonparaxial propaga-
tion regime for beam widths of wavelength and subwave-
length scales, these findings can prove instrumental in the
elaboration of an appropriate scheme to observe photorefrac-
tive miniaturized solitons.
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FIG. 2. Numerical prediction based on the full band-transport
photorefractive model of the time evolution of the normalized out-
put intensity profile �to input peak intensity Ip� at the exit facet of a
6 mm long crystal, in the conditions of the experiments in Fig. 1. FIG. 3. Level plot of the normalized divergence � · �
E / �qNa��

�i.e., the normalized space-charge density� of the space charge field
evaluated at the normalized time t /�=0.08 during the transient re-
ported in Fig. 2 �a�; and top view of the predicted intensity distri-
bution at this instant �b�. Note the regions in which the critical
charge saturation condition is reached.
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